Hierarchical design methods were originally introduced for the design of digital ICs, and they appeared to provide for significant advances in design productivity, Time-to-Market, and first-time right design. These concepts have gained increasing importance in the semiconductor industry in recent years. In the course of time, the supportive quality of hierarchical methods and their advantages were confirmed. System Level Hardware/Software Co-design: An Industrial Approach demonstrates the applicability of hierarchical methods to hardware / software codesign, and mixed analogue / digital design following a similar approach.
Hierarchical design methods provide for high levels of design support, both in a qualitative and a quantitative sense. In the qualitative sense, the presented methods support all phases in the product life cycle of electronic products, ranging from requirements analysis to application support. Hierarchical methods furthermore allow for efficient digital hardware design, hardware / software codesign, and mixed analogue / digital design, on the basis of commercially available formalisms and design tools. In the quantitative sense, hierarchical methods have prompted a substantial increase in design productivity. System Level Hardware/Software Co-design: An Industrial Approach reports on a six year study during which time the number of square millimeters of normalized complexity an individual designer contributed every week rose by more than a factor of five. Hierarchical methods therefore enabled designers to keep track of the ever increasing design complexity, while effectively reducing the number of design iterations in the form of redesigns.
System Level Hardware/Software Co-design: An Industrial Approach is the first book to provide a comprehensive, coherent system design methodology that has been proven to increase productivity in industrial practice. The book will be of interest to all managers, designers and researchers working in the semiconductor industry.
Hierarchical design methods provide for high levels of design support, both in a qualitative and a quantitative sense. In the qualitative sense, the presented methods support all phases in the product life cycle of electronic products, ranging from requirements analysis to application support. Hierarchical methods furthermore allow for efficient digital hardware design, hardware / software codesign, and mixed analogue / digital design, on the basis of commercially available formalisms and design tools. In the quantitative sense, hierarchical methods have prompted a substantial increase in design productivity. System Level Hardware/Software Co-design: An Industrial Approach reports on a six year study during which time the number of square millimeters of normalized complexity an individual designer contributed every week rose by more than a factor of five. Hierarchical methods therefore enabled designers to keep track of the ever increasing design complexity, while effectively reducing the number of design iterations in the form of redesigns.
System Level Hardware/Software Co-design: An Industrial Approach is the first book to provide a comprehensive, coherent system design methodology that has been proven to increase productivity in industrial practice. The book will be of interest to all managers, designers and researchers working in the semiconductor industry.