Finite element, finite volume and finite difference methods use grids to solve the numerous differential equations that arise in the modelling of physical systems in engineering. Structured grid generation forms an integral part of the solution of these procedures. Basic Structured Grid Generation provides the necessary mathematical foundation required for the successful generation of boundary-conforming grids and will be an important resource for postgraduate and practising engineers.
The treatment of structured grid generation starts with basic geometry and tensor analysis before moving on to identify the variety of approaches that can be employed in the generation of structured grids. The book then introduces unstructured grid generation by explaining the basics of Delaunay triangulation and advancing front techniques.
The treatment of structured grid generation starts with basic geometry and tensor analysis before moving on to identify the variety of approaches that can be employed in the generation of structured grids. The book then introduces unstructured grid generation by explaining the basics of Delaunay triangulation and advancing front techniques.
- A practical, straightforward approach to this complex subject for engineers and students.
- A key technique for modelling physical systems.